The generator matrix

 1  0  0  1  1  1  2  0  0  2  1  1  1  1  X  1  0  1  1  0  1  1  2  0  1  1  1  2  0  0  X  X  X X+2 X+2 X+2 X+2  X  1  1  1  1  X  1  1  1  1  1  1  1  1  1  1  1  1  X  2  1 X+2  1  1  1  1  1  X  1  X X+2  1  2 X+2  0  0  1  2 X+2  X  X  1 X+2  2 X+2 X+2  0  1  1  1  1  1  1 X+2  1
 0  1  0  0  3  3  1 X+2  1  1  X X+3  X X+3  1  1 X+2 X+1 X+2  1 X+1  2  1  1 X+2  2  1  1  2  X  1  1  1  1  1  1  1  X  2  3 X+2  0  0 X+2 X+3  1  3 X+3  0  2 X+3 X+2  3 X+2 X+1  X  2  1  2  0 X+3  0  0 X+1 X+2  1  2 X+2  0 X+2  2  2  0  X  X  0 X+2  0 X+1  1  2  X  1  1  3  1  0  X  X  3  1  1
 0  0  1 X+1 X+3  2 X+3  1 X+2  1  X X+2  1  3  1  3  1  2 X+1  0 X+3  X  1  X  0  1 X+2 X+1  1  1  X  2 X+3  X  3  0 X+3  1  2 X+3  1 X+1  1  0 X+2  3  X X+1  3  X  2 X+3  0 X+2  1  1  1 X+3  1  X X+3  X  2 X+1  1 X+3  1  1  2  1  1  1  1  2  1  1  1  1  1  3  1  1  X  1  1  1 X+2 X+1  X  0  1  3
 0  0  0  2  2  0  2  2  2  0  2  2  0  0  0  2  0  2  0  2  0  0  2  0  2  2  0  0  0  2  2  2  0  0  2  0  2  2  2  0  2  0  2  0  0  0  2  2  0  2  0  2  2  0  2  0  2  0  0  2  0  0  2  2  2  2  0  0  0  0  2  2  2  2  0  2  0  0  0  0  0  2  2  0  0  2  2  2  0  0  0  2

generates a code of length 92 over Z4[X]/(X^2+2,2X) who�s minimum homogenous weight is 88.

Homogenous weight enumerator: w(x)=1x^0+135x^88+170x^89+126x^90+164x^91+94x^92+56x^93+44x^94+36x^95+34x^96+54x^97+24x^98+24x^99+39x^100+8x^101+12x^102+1x^116+1x^118+1x^126

The gray image is a code over GF(2) with n=368, k=10 and d=176.
This code was found by Heurico 1.16 in 0.502 seconds.